Metadata Search Funding Data Link References Status API Help
Facet browsing currently unavailable
Page 1 of 8 results
Sort by: relevance publication year

Optic nerve and retinal nerve fiber layer

BOOK CHAPTER published 8 November 2001 in Handbook of Glaucoma

Myelinated Nerve Fiber Layer

BOOK CHAPTER published 2020 in Handbook of Pediatric Retinal OCT and the Eye-Brain Connection

Authors: Sally S. Ong | Mays El-Dairi

A semi-supervised approach for automatic detection and segmentation of optic disc from retinal fundus image

BOOK CHAPTER published 2021 in Handbook of Computational Intelligence in Biomedical Engineering and Healthcare

Authors: Susovan Jana | Ranjan Parekh | Bijan Sarkar

Retinal Imaging: Adaptive Optics

BOOK CHAPTER published 2013 in Handbook of Coherent-Domain Optical Methods

Authors: A. S. Goncharov | N. G. Iroshnikov | Andrey V. Larichev

Imaging of apoptosing retinal cells for early diagnosis

BOOK CHAPTER published 2022 in Handbook of Basic and Clinical Ocular Pharmacology and Therapeutics

Authors: Dalia Abdulhussein | Timothy E. Yap | M. Francesca Cordeiro

Early detection and diagnosis using deep learning

BOOK CHAPTER published 2021 in Handbook of Deep Learning in Biomedical Engineering

Authors: Deepak Kumar Sharma | Saakshi Bhargava | Aashna Jha | Pawan Singh

are purified lipid contents and others are not, and the puri-(Paspalum scrobiculatum), and barnyard (Echinocloa fied lipid content depends on the purification method. colona). Sridhar and Lakshminarayana [32] also reported Starch lipids (SL) are those bound to starch, and they FL contents of 5.0, 5.6, and 2.2% for Proso, Foxtail, and are the most difficult to extract. Since true SL are present Finger millet, respectively. Taira [45] found slightly high-inside the starch granules, even a very polar solvent such er average FL (ether extraction) contents for glutinous as WSB cannot extract them at ambient temperature. Effi-foxtail millet (4.2-5.1%, average 4.7% of 21 samples) cient extraction of SL requires mixtures of hot aqueous al-than for nonglutinous foxtail millet (4.0-4.7%, average cohol in proportions optimized for controlled swelling of 4.4% of 31 samples). Among millet, pearl millet contains the starch granules and solubilization of the lipids [25]. the most FL. The best solvents are n-propanol or isopropanol with water Lipid contents of rice in Table 2 were cited by Morrison (3:1, by volume) used under nitrogen at 100°C. However, [3] using the data of Nechaev and Sandler [2]. Taira and some n-butanol—water and methanol-water mixtures also Chang [46] reported that the average nonglutinous brown are reasonably efficient extraction solvents at 100°C [25]. rice FL (ether extraction) contents of 20 varieties each of Recently, a third lipid category was introduced. Starch sur-Indica and Japonica types were 2.7% (2.38-2.91%) and face lipids (SSL) are portions of the nonstarch lipids 2.9% (2.54-3.58%), respectively. More recently, Taira et (NSL), which become firmly absorbed onto or into starch al. [47] reported the average FL contents of 15 nongluti-granules during the separation of pure starch [24]. nous varieties as 2.5% (2.24-2.97%) for Indica, 2.5% Lipids are minor components of the cereal grains shown (2.12-2.94%) for Japonica, 2.7% (2.35-3.03%) for Sinica, in Table 2. Data in this table, expressed on a dry basis, and 2.6% (2.11-2.99%) for Japonica types. were calculated from reported values [3,16,26-41]. Also, some BL or TL contents were calculated by subtracting FL from TL or by adding FL to BL, depending on the avail-B. Nonstarch Lipid Classes of Grains ability of data. The FL contents range from 1.5 to 2% of Lipids can be separated into three broad classes by open-the kernel weights of barley, rice, rye, triticale, and wheat column silicic acid chromatography. Nonpolar lipids (NL) grains. They range from 3 to 7% of the kernel weights of are first eluted by chloroform, glycolipids (GL) are eluted oats, millet, corn, and sorghum. However, BL contents in next by acetone, and phospholipids (PL) are eluted last grains are more uniform than FL contents. Therefore, the with methanol. Mixtures of GL and PL are polar lipids FL:BL ratio is substantially higher for corn, millet, oats, (PoL). After NL elution from a silicic acid column, PoL and sorghum than for rye, triticale, and wheat grains. The can be eluted with methanol without the GL elution step. FL:BL ratios for barley and rice are intermediate. Lipids can also be separated into various classes by thin-High oil-containing grains such as corn are continuous-layer chromatography (TLC) using different development ly bred for higher oil content with improved production solvent systems. Each individual lipid class migrates dif-yield. Application of wide-line NMR spectroscopy for ferently on the thin-layer plate, and the difference in mi-nondestructive analysis of the oil content in single corn gration rates makes it possible to separate complex lipids kernels made selection for higher oil content more efficient into classes. The NL consists of SE, TG, DG, MG, and [42]. Corn hybrids with 6-8.5% oil content and grain FFA (see Table 1). The total NL content is obtained by yields equal to those of good commercial hybrids were adding these NL class contents as measured by densitome-produced [43]. try. Thus, the NL content of samples may differ, to some Several kinds of millet exist, and the lipid data in the extent, depending on methodology used (column separa-literature are confusing. Rooney compared the FL (ether tion or TLC separation). extraction) contents of several types of millet in a review The data [1,13,27,29,32,36-38,40,48-58] shown in paper [16]. The average FL contents of pearl millet (Pen-Table 3 may be used for only approximate comparison of nisetum typhoids) were 5.1% (4.1-5.6%, 14 samples), the NL content from different grains because some were 5.4% (2.8-8.0%, 167 samples, [44]), 5.6% (4.3-7.1%, 40 obtained by column chromatography and some by TLC. samples), and 6.2% (4.2-7.4%, 35 samples) [16]. Other All cereal grain lipids are richer in NL than in other class-reported average FL contents were 4.8% (4.6-5.0%, 6 es: 60-70% of the TL are NL in wheat (hexaploid), triti-samples) for foxtail millet (Setaria Italica), 5.8% cale, and rye; 65-80% for barley and oat groats; 77-87% (5.5-6.3%, 6 samples) for Japanese millet (Echinochloa for sorghum and rice; and 75-96% for corn and millet crusgalli), and 4.2% (3.8-4.9%, 20 samples) for proso (Pennisetum americanum). Sridhar and Lakshminarayana millet (Panicum miliaceum) [16]. Sridhar and Lakshmi-[32] reported 82, 80, and 79% of NL for Foxtail, Proso, narayana [30] reported a FL content range of 3.4-5.7% for and Finger millet, respectively. There are significant vari-small millet, including little (Panicum sumatrense), kodo etal effects on the NL/PoL ratio for corn and millet (P.

BOOK CHAPTER published 28 March 2000 in Handbook of Cereal Science and Technology, Revised and Expanded

half of pericarp lipids were unsaponifiable materials. Tip showed 86-91% NL, 2-5% GL, and 7-9% PL [14,56,152]. cap lipids had more TG, GL, and PL than pericarp lipids, Milled rice NSL had a lower NL fraction and a higher but were otherwise similar. GL fraction. The ratios for the NL:GL:PL for milled rice The compositions of NL, GL, and PL were computed are 82:8:10 by Choudhury and Juliano [56], 76:12:12 by (Table 41). The TG was over 90% of the NL in the germ Hirayama and Matsuda [55], and the range of (83-91): [137,138], about 60% in the endosperm NSL, but only (2-4):(1-3) by Azudin and Morrison [153]. 2.5% in endosperm SL. Over 90% of the NL was FFA in Azudin and Morrison [153] investigated NSL and SL in the SL. Weber [137] detected substantial quantities of CB milled rice of two waxy varieties (1.0-2.3% amylose) and and sulfolipids (tentative identification) in the GL of the 12 nonwaxy varieties (12.2-28.6% amylose). The TL germ and endosperm NSL. (NSL + SL) were extracted from rice flour and SL from pu-The major component in germ PL was PC, which was rified rice starch. The composition of the NSL could be ob-in good agreement between Tan and Morrison [138] and tained by the difference, as shown in Table 47. Weber [137]. However, the PL composition of the en-The major NL of NSL was TG, constituting 71-79% of dosperm NSL differed largely; Tan and Morrison [138] re-NSTL (Table 47) and 83-87% of NL [56,152]. The other ported 11.1% PC and 57.1% LPC, whereas Weber [137] important NL class was FFA, at 4-7% of the NSTL and reported 44.6% PC and 36.5% LPC plus an unknown. 13-17% of the NL for brown rice, bran, germ, and polish. The FA compositions were higher in levels of 18:0 and Unlike most other cereal NSL, the major GL of NSL of 18:3 for endosperm than germ (Table 42). For the LG-11 brown rice and its milling fractions were ASG and SG hybrid corn, germ lipids contained significantly more 18:2 (Table 47). Major PL classes were PC and PE. and less 16:0 and 18:3 than other parts of kernel [138]. For Choudhury and Juliano [56] reported that the distribu-the H-51 inbred corn, germ lipids contained less 18:3 than tion of brown rice NL was 14-18% in germ, 39-41% in other kernel parts but more 18:1 and 18:2 than pericarp and bran, 15-21% in polish, and 25-33% in milled rice tip cap. However, the 18:2 content was equal for both the (12-14% in subaleurone layer and 12-19% in the en-germ and the endosperm lipids [42]. The FA compositions dosperm). The distribution of the NSL of brown rice was in root and leaf lipids differ significantly from those of 43% in bran, 19% in germ, 15% in polish, and 21% in corn kernel or other kernel parts; corn leaf lipids contained milled rice; and for brown rice PL, 30% in bran, 14% each a much higher level of 18:3 and lower levels of 18:1 and in germ and polish, and 42% in milled rice [56,152]. 18:2 (Table 42). The TL (NSL + SL) compositions are different between Ohnishi et al. [150] investigated the positional distribu-waxy and nonwaxy rice varieties (Table 48). Azudin and tion of fatty acids in glycerolipid classes from corn total Morrison [153] reported that the two waxy rice (IR 29 and lipids (Table 43). Unsaturated fatty acids, 18:1 and 18:2, C441-4) starches prepared from the milled rice had very are located mainly in the 2-position of these glycerolipids. little amylose content (1.0-2.3%) and only traces of lipids However, PI showed relatively high 16:0 content at the 1-(16-19 mg per 100 g starch), which were probably SSL, position and 18:2 content at the 2-position. Fatty acid com-the NSL contaminants. The SSL were 100% FFA (Table positions of molecular species of glycerolipids were also 48). The TL in waxy rice were, therefore, NSL and they investigated by reverse-phase high-performance liquid evidently had suffered substantial lipolysis, judging by chromatography (Table 44). The main species generally high FFA values [153]. The nonwaxy starches contained contained 16:0-18:2, 18:1-18:2, and 18:2-18:2 for TG, 0.9-1.3% SL comprising, on average, 31.2% (29-45%) PC, PE, and PI. The main molecular species of DGDG FFA, 61.5% (48-67%) PL, and 3.2% GL [153], as shown contained 18:3-18:3, 18:1-18:2, 18:2-18:2, 18:2-18:3, in Table 48. and 18:1-18:3. Choudhury and Juliano [56] extracted SL from milled Vasanthan and Hoover [151] investigated the content rice after the NSL removal, using the one waxy variety (IR and composition of SSL and SL of purified corn starch 4445-63-1 with 2% amylose) and the two nonwaxy vari-(Table 45). The SSL contained mainly free S, SE, and LPL. eties (IR42 with 29% amylose and IR480-5-9 with 24% The SL contained mainly FFA and LPL. Fatty acid compo-amylose). The SL composition of the milled rice of the sition indicated that 16:0 and 18:2 were the principal fatty waxy variety contained 41% PL and 7% GL, whereas the acids of SL and SSL (Table 46). waxy starch by Azudin and Morrison [153] contained no GL and PL (Table 48). The SL compositions of waxy rice and nonwaxy rice (both milled and brown) were different Rice hull lipid composition differs significantly from that in [56] but not to the extent shown by Azudin and Morrison brown rice and its fractions (Table 47). Silicic acid fraction-[153]. ation of NSL from brown rice, bran, germ, and polish The FA compositions of NSL and SL classes in the three

BOOK CHAPTER published 28 March 2000 in Handbook of Cereal Science and Technology, Revised and Expanded